ECSE413B: COMMUNI CATI ONS SYSTEMS II
Instructor: Tho Le-Ngoc, Off.:MC815, Tel.: 398-5252, fax: 398-4470, e-mail: tho.le-ngoc@mcgill.ca
Assignment 1: Propagation \& Channel Characterization, due date: Monday, February 18/2008

1. $Z=X+j Y$ where X, Y are independent zero-mean Gaussian random variables with variance σ^{2}, show that Z^{2} $=X^{2}+Y^{2}$ and $|Z|=\left[X^{2}+Y^{2}\right]^{1 / 2}$ are exponentially-distributed and Rayleigh-distributed, respectively.
2. Calculate the overall gain and noise figure in dB of the receiver shown in page 24 of Lecture Notes $B 2$ Radio Transceiver for

- $L_{\text {BPF1 }}=\mathrm{L}_{\mathrm{BPF} 2}=1 \mathrm{~dB}, \mathrm{~L}_{\text {MIXER } 1}=7 \mathrm{~dB} \mathrm{G}_{\mathrm{LNA}}=10 \mathrm{~dB} \mathrm{G}_{\mathrm{IF}}=20 \mathrm{~dB}, \mathrm{~F}_{\mathrm{LNA}}=3 \mathrm{~dB}, \mathrm{~F}_{\mathrm{IFAMP}}=6 \mathrm{~dB}, \mathrm{~F}_{\mathrm{DEMOD}}=8 \mathrm{~dB}$
- $L_{\text {BPF1 }}=L_{B P F 2}=1 \mathrm{~dB}, \mathrm{~L}_{\text {MIXER1 }}=7 \mathrm{~dB} \mathrm{G}_{\mathrm{LNA}}=20 \mathrm{~dB} \mathrm{G}_{\mathrm{IF}}=10 \mathrm{~dB}, \mathrm{~F}_{\mathrm{LNA}}=3 \mathrm{~dB}, \mathrm{~F}_{\text {IFAMP }}=6 \mathrm{~dB}, \mathrm{~F}_{\mathrm{DEMOD}}=8 \mathrm{~dB}$ Based on the results of the above 2 cases, discuss the effects of gain distribution on the overall receiver noise figure.

3. Consider the terrain profile shown in page 19 of Lecture Notes B1 Radio Propagation \& LOS. Establish the LOS $100 \mathrm{Mb} / \mathrm{s}$ heavy-route link with $\mathrm{K}=4 / 3$, operating at 2 GHz for a minimum required $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}$ of 10dB and availability of $A \%$ in an area with environmental parameters $\mathrm{K}, \mathrm{Q}, \mathrm{B}$, and C (as discussed in page 23 of Lecture Notes B1). The total microwave cable feeder/branching losses (L_{b}) are 2 dB and receiver noise figure (NF) is 4 dB .

- Calculate the heights of the 2 antenna towers, identify the $1^{\text {st }}$ Fresnel zone and required clearance at different points on the link, and plot the LOS path between two antennas.
- Calculate the required minimum received power ($\mathrm{C}_{\text {min }}$), free-space loss (L_{Fs}), required fade margin (FM).
- Select the required transmitted power (P_{T}), transmit and receive antenna gains ($\mathrm{G}_{\mathrm{T}}, \mathrm{G}_{\mathrm{R}}$) and beamwidths (as discussed in pages 30-33 of Lecture Notes B2 Radio Transceiver).

Name:	Values for Prob. 3:
Benboubker, Halima	$\mathrm{A} \%=99.99 \%, \mathrm{~K}=1.2 \mathrm{E}-6, \mathrm{Q}=1, \mathrm{~B}=1, \mathrm{C}=3$
Canonne-Velasquez, Loïc J.	$\mathrm{A} \%=99.999 \%, \mathrm{~K}=9 \mathrm{E}-7, \mathrm{Q}=1, \mathrm{~B}=1, \mathrm{C}=3$
Carrier, Mark	$\mathrm{A} \%=99.99 \%, \mathrm{~K}=0.97 \mathrm{E}-9, \mathrm{Q}=0.4, \mathrm{~B}=1.2, \mathrm{C}=3.5$
Mohajerani, Reza	$\mathrm{A} \%=99.999 \%, \mathrm{~K}=0.97 \mathrm{E}-9, \mathrm{Q}=1, \mathrm{~B}=1.2, \mathrm{C}=3.5$
Muwaddat, Syed Muhammad	$\mathrm{A} \%=99.99 \%, \mathrm{~K}=1.2 \mathrm{E}-6, \mathrm{Q}=3.35, \mathrm{~B}=1, \mathrm{C}=3$
Sikander, Mueid	$\mathrm{A} \%=99.99 \%, \mathrm{~K}=6 \mathrm{E}-7, \mathrm{Q}=0.27, \mathrm{~B}=1, \mathrm{C}=3$

