McGill

ECSE413B: COMMUNI CATI ONS SYSTEMS II
Instructor: Tho Le-Ngoc, Off.:MC815, Tel.: 398-5252, fax: 398-4470, e-mail: tho.le-ngoc@mcgill.ca Assignment 2: Transmission Techniques, due date: Thursday, March 6/2008

1. Using the equations for the (exact) probability of symbol error of the M-ary ASK (or PAM), PSK, QAM and orthogonal FSK, plot the "probability of symbol error versus $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}$ " curves for the range (of probability of symbol error) from 10^{-3} to 10^{-8}, and compare their performance for $\mathrm{M}=16$, and 64 . Note that E_{b} is the average bit energy and $\mathrm{E}_{\mathrm{b}} \log _{2} \mathrm{M}=\mathrm{E}_{\mathrm{s}}$ (see C 1).
2. For the same probability of symbol error (e.g., 10^{-6}), derive and plot "the required $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}$ versus M " for M-ary ASK (or PAM), PSK, QAM and orthogonal FSK and M=4, 8, 16, 32, 64,128, 256. Compare and discuss the results (see C1).
3. You are requested to design a point-to-point communications link to support a transmission rate of $12 \mathrm{Mb} /$ s using a carrier frequency of 2.17 GHz .
(a) Determine the allowable bandwidth at the carrier frequency of 2.17 GHz (See B1 page 30). From the allowable bandwidth and transmission rate, calculate the required bandwidth efficiency in $\mathrm{b} / \mathrm{s} / \mathrm{Hz}$.
(b) Select an M-ary PSK or M-ary QAM scheme (using root raised-cosine filters in both transmitter and receiver) and the roll-off factor of the detection filter to meet the requirements and FCC mask. Justify your selection and sketch the Tx spectrum with FCC mask (See B1 pages 30-32 and C2).
(c) Consider a threshold BER of 10^{-4} over a link 20 km with a link availability of 99.999% in a maritime temperate, average terrain US region $(\mathrm{K}=4 / 3)$. For a receiver with an overall noise figure of 6 dB , a typical cable loss of 3 dB per site, and a performance degradation of 1.5 dB due to practical implementation, calculate the required fade margin, Tx power, and Tx and Rx antenna gain (See B1, C1).
(d) For 6 dB improvement, calculate the required vertical separation in space diversity, and the required frequency separation in frequency diversity (See C3, pp.21-22).
(e) Repeat the problem with
(i) a transmission rate of $120 \mathrm{Mb} / \mathrm{s}$ using a carrier frequency of 11 GHz , and
(ii) a transmission rate of $60 \mathrm{Mb} / \mathrm{s}$ using a carrier frequency of 3.8 GHz .
4. Figure 1 shows a block diagram of a receiver

BPF: RF bandpass filter with insertion loss $L_{B P F}=1.5 \mathrm{~dB}$
LNA: Low-Noise Amplifier with gain $G_{L N A}$ and noise figure $N F_{\text {LNA }}$
MIXER: passive mixer including bandpass filter with conversion loss $\mathrm{L}_{\text {MIXER }}=8 \mathrm{~dB}$
AMP: IF amplifier with gain $\mathrm{G}_{\text {AMP }}$ and noise figure $\mathrm{NF}_{\text {AMP }}=6 \mathrm{~dB}$
DEMOD: A demodulator with a noise figure of 8dB
Figure 1: A Receiver Structure
(a) Select the values for $G_{L N A}, N F_{L N A}$, and $G_{\text {AMP }}$ to achieve the overall noise figure of 6 dB or better (lower)
(b) For a received signal power of -90 dBm and a noise power spectral density of $-174 \mathrm{dBm} / \mathrm{Hz}$ at the receiver input, calculate the available $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}$ at the input of the demodulator if the transmission rate is 5Mb/s
5. Consider a BPSK transmission using coherent demodulation.
(a) What is the required $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}$ to achieve a bit error probability, P_{b}, of 10^{-4} in an AWGN channel.
(b) For the $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}$ obtained in (a), calculate the bit error probability of the BPSK system using L-path MRC diversity in a Rayleigh fading channel with $\sigma^{2}=1$ when $L=2,3,4, \ldots, 10$
(c) Repeat (b) with $\sigma^{2}=0.5$ and with $\sigma^{2}=2$. Compare the results obtained in (a)-(c) and discuss the effects of L and σ^{2} on the system performance.

