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Multipath Modeling time

input

time
Tm

multipath delay spread

output

Channel consists of  a random number of path components, each with random amplitude, 
phase, Doppler shift, delay, changing with time. Multipath fading due to constructive and 
destructive interference of the transmitted waves.
W: signal bandwidth, sampling rate: 1/W
Transmission at passband [fc-W/2, fc+W/2] and processing at baseband [-W/2,+W/2].
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LINEAR TIME-VARIANT CHANNEL MODEL
OF MULTIPATH PROPAGATION

Multipath channel due to N scatters characterized 
by amplitude ( ) and delay ( ) for =1,2,..., :

Tx signal: Re ( ) , (

 Rx signal (without noise): 
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The (baseband) impulse response of an LTV channel, h(τ; t), is the channel 
output at t in response to an impulse applied to the channel at (t-τ), i.e., τ is 
how long ago impulse was put into the channel for the current observation. 
Each path of h(τ; t) is associated with a delay and a complex gain
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Linear time-variant (LTV) channel:

Received signal consists of many components with 
slow amplitude changes, but fast phase 
changes, introducing constructive and 
destructive addition of signal components.
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Narrowband frequency-flat fading:

Delay spread: Tm= maxm,n|τn(t)-τm(t)| 
If Tm <<1/W, W:signal BW, then x(t)≈x(t-τn).
Received signal given by

Multipath effects: complex random fading a(t).
No signal distortion (spreading in time, frequency-flat fading)
For N(t) large, the Im and Re parts of a are jointly Gaussian (they are 
i.i.d., stationary if ϕn(t) ∼U[0,2π])
Received signal characterized by its mean, autocorrelation, and cross 
correlation.
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Multipath Resolution and Frequency- Flat and 
Selective Fading

Sampled baseband-equivalent noise-free 
received signal:
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where n* denotes all n’s corresponding to delays τn(t)’s within the time 
interval [(k-1)/2W, (k+1)/2W], and
all  possible paths τn’s are in the time interval [(K1-1)/2W, (K2+1)/2W].
Delay spread Tm≤ (K2- K1 +1) /W . Coherence BW=1/Tm

Hence, Tm<<1/W: single tap (resolvable path), frequency-flat fading
Tm>1/W: multiple taps (resolvable paths), frequency-selective fading

τ

1/WτΔ <<

Tm: multipath delay spread
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Time-variant & Doppler effects

Coherence time: (Δt)c=1/Bd,
For 1/Bd >>1/W, slow (TIME-FLAT) fading 

For 1/Bd < 1/W, fast (TIME-SELECTIVE) fading
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Tm< 1/Bd: under-spread channels (typical):
Delay spread Tm depends on distance to scatterers, of the order of 
nanoseconds (indoor) to microseconds (outdoor).
Coherent time 1/Bd depends on carrier frequency and vehicular speed, 
of the order of milliseconds or more.
over a long-time scale, channel can be considered as time-invariant.
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STATIONARY RANDOM PROCESS: REVIEW

Definition: Strictly or strict-sense stationary (SSS) random process X(t):
Its 1st-order distribution function independent of t: 
FX(t)(x) = FX(t+t’)(x), for ∀t,t’
Its 2nd-order distribution function depends only on the time difference 
(between 2 observation times t, t’):
FX(t),X(t’)(x,x’) = FX(0),(t’-t)(x,x’), ∀t,t’

Results: Strictly stationary random process X(t) has:
Constant mean: mX(t)≡E{X(t)}=mX for ∀t
Autocorrelation function depends only on time difference:
RX(t,t’) ≡ E{X(t)X(t’)}= RX(d)= RX(-d); RX(0)= E{X2(t)}≥⏐ RX(d)⏐, d= t-t’
power spectral density (psd):

RX(t-t’) describes the interdependence of 2 RV’s obtained by observing X(t) at 
times t and t’: RX(t-t’)  with a wide pulse-width indicates a slowly fluctuating X(t)
The above results are not sufficient to guarantee that X(t) is strictly 
stationary. If X(t) ONLY has the above characteristics, it is called wide-sense 
stationary (WSS), or 2nd-order or weakly stationary

∫
+∞

∞−

−≡ ττ τπ deRfS fj
XX

2)()(
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WSSUS MODEL OF MULTIPATH CHANNEL

A channel is wide-sense stationary uncorrelated scattering (WSSUS) when:
(a) its impulse response h(τ; t) is a wide-sense stationary (WSS) process;
(b) US: its impulse responses at τ1 and τ2 , h(τ1; t) and h(τ2; t), are uncorrelated if τ1 ≠ τ2

for any t , i.e., E{h(τ1; t)h(τ2; t)}=0 if τ1 ≠ τ2.
The autocorrelation function of h(τ; t):
φh(τ,Δτ, Δt)≡0.5E{h*(τ,t) h (τ+Δτ,t+Δt)}; US: φh(τ,Δτ, Δt) = φh(τ,0, Δt)δ(Δτ)
φh(τ) ≡ φh(τ,0, 0): multipath intensity profile (or delay power spectrum) provides the
average power at the channel output as a function of the propagation delay, τ. 
Approximate max delay of significant multipath.
multipath delay spread, Tm: nominal width of the multipath intensity profile φh(τ): range 
of τ over which φh(τ) is essentially non-zero
Usually, it is assumed that Tm≈στ

Channel Modeling Tho Le-Ngoc 
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autocorrelation function of transfer function H(f; t)
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( ; ) ( ; ) :  time-varying channel transfer function 
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Fourier transform relations for WSSUS h(τ; t)

{ }auto-correlation function of ( ; ): ( ; ) 0.5 *( ; ) ( ; ) ( ,0, ) ( );
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used to characterize 
channel rms delay and 
Doppler spread. 

Channel Modeling Tho Le-Ngoc 



PAGE 12

Delay spread & frequency-selective fading

W: bandwidth of the 
transmitted signal.

If (Δf)c < W, frequency-
selective fading channel: 
severe ISI;

If (Δf)c >> W, flat fading 
channel: negligible ISI.

ISI-free channel: ( ) :constant ( ) ( )H o h ofφ φ φ τ φ δ τΔ ≈ ↔ =

{ },( ) ( ) : delay power spectrum,

                                    correlation of channel gains at  and  for any 
H f hf

f f t
τφ φ τΔΔ =

Δ

F

coherence bandwidth of 
the channel, (Δf)c ≈1/Tm: 
The maximum frequency 
difference for which the 
signals are still strongly
correlated. Two sinusoids 
with frequency separation 
larger than (Δf)c are 
affected differently by the 
channel at any t. 

φH(Δf)=0 implies signals separated in frequency by Δf will be uncorrelated after 
passing through channel
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At receiver, the received signal is 
r(t)= x(t) + β x(t-τ)
where x(t) : the main path
β : relative level between the main and reflected 
paths
τ=2d0/c: relative time delay between the main and 
reflected path, 
Channel transfer function T(ω) = 1 + βe-jωτ

Amplitude distortion: 
lT(ω)l2= 1 + β2 + 2βcos ωτ= 1 + β2 + 2βcos ωτ
phase distortion: 
Φ(ω) = tan-1 [βsin ωτ/(1 + βcos ωτ)]
group delay distortion g(ω) = dΦ/dω
g(ω)=βτ(β+cos ωτ)/(1 + β2 + 2βcosωτ)

EXAMPLE OF 2-PATH MODEL

d0
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Time correlation function φH(Δt) 
& Doppler power spectrum

SH(v)

φH(Δt) is independent of f due to the US assumption: US in 
the time domain is equivalent to WSS in the frequency 
domain.
φH(Δt) characterizes, on average, how fast the channel 
transfer function changes with time at each frequency.
φH(Δt)=0 implies signals separated in time by Δt will be 
uncorrelated after passing through channel.
coherence time of the fading channel, (Δt)c: Maximum 
time over which φH(Δt)>0: nominal width of φH(Δt). 
(Δt)c>>T(symbol interval of the Tx signal): slow fading.
Doppler power spectrum φH(ν): Fourier transform of the 
time correlation function φH(Δt) 
Doppler spread Bd is maximum Doppler for which φH(ν)→0 : 
nominal width of φH(ν), Bd≈1/(Δt)c

Channel Modeling Tho Le-Ngoc 
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Time correlation function φH(Δt) 
& Doppler power spectrum
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Doppler-spread function H(f,ν):
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being time-variant in the time domain can be equivalently described by 
having Doppler shifts in the frequency domain. 

DOPPLER-SPREAD ⇒ TIME-SELECTIVE FADING
Doppler power spectrum: function of the Doppler shift,ν, Fourier transform 
of the time-correlation function φH(Δt)
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Doppler Spread in land-mobile channel
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AUTOCORRELATION & DOPPLER POWER SPECTRUM 
OF A LAND-MOBILE RADIO CHANNEL 

SH(ν)

-B +B

Correlation over Time can be specified 
by autocorrelation function and power 
spectral density of fading process.
•For an omnidirectional mobile antenna 
and received plan waves uniformly 
distributed in arrival angle, 

•time correlation function:
φH(Δt)= PJo(2πBΔt), 
Jo(x) is the 0th-order Bessel 
function of the 1st kind. 

•Doppler power spectrum φH(ν): 
Fourier transform of time-
correlation function,

SH(ν)=P/{π[B2- ν2]1/2}, 
|ν| <B=Bd/2=vfc/c
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STATISTICAL MULTI-TAP MODELS

Non-LOS: many small scattered paths, complex circular symmetric Gaussian tap. 
→ signal envelope follows Rayleigh distribution (power is exponential)
Near-LOS (with LOS component): 1 line-of-sight plus scattered paths. → signal 
envelope follows Ricean distribution.

In some environments, measured results support Nakagami distribution (Similar 
to Ricean, but models “worse than Rayleigh”, better to obtain closed-form BER 
expressions)
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multi-tap model for design and performance analysis based on statistical 
ensemble of channels rather than specific physical channel
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Small-Scale Multipath Fading:
Rayleigh fading (NLOS propagation) case

central limit theorem: when N is sufficiently 
large, Zc(t) and Zs(t) are approximately 
independent Gaussian random variables 
with zero mean and equal variance

The amplitude fading,α, follows a Rayleigh
distribution with parameterσz

2

The phase distortion follows the uniform 
distribution over [0, 2π],

Channel Modeling Tho Le-Ngoc 
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Small-Scale Multipath Fading:
Rician Fading (LOS propagation) case

α0
2: power of the 

LOS component 

zero-order modified Bessel 
function of the first kind

K = 0: Rayleigh 

K →∞: no fading
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Rician probability density functions with σz
2 = 1
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attenuation and fading
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LEVEL CROSSINGS & FADE DURATION
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( ) ,  threshold , i.e., ( ) :  outage, fade

:  fade duration, for large observation time T, Pr ( ) /

( 1)average fade duration: 
/ 2

i i
i

R z

R
d

z t r t

z E r t R z t R

t z t R t T

et
R z f π

<

⎡ ⎤
< = ⎢ ⎥

⎣ ⎦

−
=

∑

Threshold 
level R

fade duration: 
a user is in continuous outage since 
the actual SNR (γ) is below the 
threshold level R required to maintain 
a maximum BER
can be derived from level crossing 
rate of fading process
for Rayleigh fading,

Inversely proportional to Doppler 
frequency
Dependent  on margin
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Outage Probability
and Cell Coverage Area

Outage: received power below 
given minimum required for 
acceptable performance. 
cell coverage area : expected 
percentage of area within a cell 
that has received power above a 
given minimum required for 
acceptable performance. 
circular cells for path loss only, 
amoeba cells for path loss & 
shadowing as tradeoff between 
coverage and interference

Cell coverage area increases as 
shadowing variance decrease

Path loss & random 
shadowing

BS

Path loss & avg
shadowing

EQUAL RX POWER CONTOURS

Channel Modeling Tho Le-Ngoc 
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