BANDLIMITED SIGNALING OVER AWGN CHANNELS

POWER SPECTRA OF LINEARLY MODULATED SIGNALS Bandpass signal $s(t) = \operatorname{Re}\left\{v(t)e^{j\omega_c t}\right\}$,

v(t): complex baseband signal, ω_c : center (carrier) frequency

Power spectral density (psd): $S_s(f) = \frac{1}{2} [S_v(f - f_c) + S_v(-f - f_c)]$

Consider a complex baseband signal $v(t) = \sum_{n=-\infty}^{\infty} I_n g(t - nT)$

g(t): Tx sprectrum-shaping pulse, G(f): Fourier transform of g(t) In: symbol, **real** for M-PAM, **complex** for M-PSK, M-QAM, M-APK

In: wide-sense stationary with mean $\mu_i \Rightarrow E\{v(t)\} = \mu_i \sum_{n=-\infty}^{\infty} g(t-nT)$

and, autocorrelation function: $\Phi_{II}(m) = \frac{1}{2}E\{I_n^*I_{n+m}\}$

PAM: $\Phi_{II}(m) = \begin{cases} \mu_i^2 & \text{for } m \neq 0 \\ \mu_i^2 + \sigma_i^2 & \text{for } m = 0 \end{cases}$ for {I_n}: real, mutually uncorrelated

autocorrelation function of v(t):

$$\Phi_{vv}(t+\tau,t) = \frac{1}{2} E\{v^*(t)v(t+\tau)\} = \frac{1}{2} \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \underbrace{E\{I_n^*I_{m+n}\}}_{\Phi_{II}(m)} g^*(t-nT)g(t+\tau-mT-nT)$$
$$= \sum_{m=-\infty}^{\infty} \Phi_{II}(m). \quad \left[\sum_{n=-\infty}^{\infty} g^*(t-nT)g(t-nT-mT+\tau)\right]$$

 $\gamma(t + \tau - mT)$: Periodic in t with period T

 $\Phi_{vv}(t+\tau;t)$: **periodic in t** with period T, E{v(t)}: **periodic** with period T $\Rightarrow v(t)$: **cyclostationary** (periodically stationary in wide sense) averaging $\Phi_{vv}(t+\tau;t)$ over a single period to remove t

$$\overline{\Phi}_{vv}(\tau) = \frac{1}{T} \int_{-T/2}^{T/2} \Phi_{vv}(t+\tau,t) dt = \sum_{m=-\infty}^{\infty} \Phi_{II}(m) \cdot \frac{1}{T} \sum_{n=-\infty}^{\infty} \int_{-nT-T/2}^{-nT+T/2} g^{*}(u) g(u+\tau-mT) du$$
$$= \frac{1}{T} \sum_{m=-\infty}^{\infty} \Phi_{II}(m) \underbrace{\int_{-\infty}^{+\infty} g^{*}(u) g^{*}(u+\tau-mT) du}_{-\infty}$$

(time-autocorrelation function of g(t):

 Φ (τ mT) \Im $|C(f)|^2 e^{-jm\sigma T}$

 $\frac{\sigma_I^2}{T} \left| G(f) \right|^2 + \frac{\mu_I^2}{T^2}.$

spectrum

 $S_v(f) = -$

PAM:
$$\Phi_{II}(m) = \begin{cases} \mu_i^2 & \text{for } m \neq 0 \\ \mu_i^2 + \sigma_i^2 & \text{for } m = 0 \end{cases} \implies S_v(f) = \frac{1}{T} |G(f)|^2 \begin{cases} \sigma_I^2 + \mu_I^2 \sum_{\substack{m=-\infty \\ periodic \text{ in } f \text{ with } period \text{ of } 1/T} \end{cases} \end{cases}$$

 $\left(-\frac{m}{T}\right)$

$$\sum_{m=-\infty}^{+\infty} e^{-j\omega mT} = \frac{1}{T} \sum_{m=-\infty}^{+\infty} \delta(f - \frac{m}{T})$$

To remove the discrete spectral lines, we need

 μ_l=0 zero mean sequence or:

•
$$\left| G\left(\frac{m}{T}\right) \right|^2 = 0$$
 for all m

Discrete spectral lines

TIME-LIMITED $g(t) \Rightarrow G(f)$ with INFINITE BW

EXAMPLE: PAM signal using rectangular pulse:

- \Rightarrow FOR BANDLIMITED TRANSMISSION, WE WANT G(f) with LIMITED BANDWIDTH
- \Rightarrow g(t) is **no longer** time-limited

For bandlimited signaling, g(t)≠0 for t∉[0,T]. However, the ISI term can be eliminated when h(mT)=0 for all m≠0
⇒ WE WANT BANDLIMITED G(f), G_R(f)=G^{*}(f)e^{-jωT} AND H(f)= G(f)G_R(f) WITH h(mT)=0 for all m≠0

DERIVATION: MATCHED FILTER & MAXIMUM output SNR: $y(t) = v(t)*g_{R}(t)+n(t)*g_{R}(t)$ power of noise part $n(t)*g_{R}(t)$: $N = \int_{-\infty}^{+\infty} \frac{N_{o}}{2} |G_{R}(f)|^{2} df = \frac{N_{o}}{2} \int_{-\infty}^{+\infty} G_{R}(f)G_{R}^{*}(f)df = \frac{N_{o}}{2} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} G_{R}^{*}(f)g_{R}(t)e^{-j2\pi i t} dt df$ $N = \frac{N_{o}}{2} \int_{-\infty}^{+\infty} g_{R}(t)g_{R}^{*}(t)dt = \frac{N_{o}}{2} \int_{-\infty}^{+\infty} g_{R}(t)|^{2} dt$ signal part: $a(t)=v(t)*g_{R}(t) = \sum_{n=-\infty}^{\infty} I_{n}h(t-nT)$ where $h(t)=g(t)*g_{R}(t)$ $a(kT) = \sum_{n=-\infty}^{+\infty} I_{n} \int_{-\infty}^{+\infty} g(\tau)g_{R}([k-n]T-\tau)d\tau = I_{k} \int_{-\infty}^{+\infty} g(\tau)g_{R}(-\tau)d\tau$ for time-limited g(t), i.e., g(t)=0 for $t \notin [0,T]$ Signal power: $E\{a^{2}(kT)\} = \sigma_{I}^{2} \left|\int_{-\infty}^{+\infty} g(t)g_{R}(-t)dt\right|^{2}, \quad \sigma_{I}^{2} = E\{I_{k}\}^{2}$ Output signal-to-noise power ratio: $SNR = \frac{\sigma_{I}^{2}}{N_{o}/2} \frac{\left|\int_{-\infty}^{+\infty} g(t)g_{R}(-t)dt\right|^{2}}{\int_{-\infty}^{+\infty} g_{R}(t)^{2} dt}$ is maximum when $g_{R}(t)=g(T-t)$ or $G_{R}(f)=G^{*}(f)e^{-j\omega T}$

note: The Cauchy-Schwarz inequality: $\left|\int_{-\infty}^{+\infty} x(t)y^{*}(t)dt\right|^{2} \leq \int_{-\infty}^{+\infty} |x(t)|^{2} dt \int_{-\infty}^{+\infty} |y(t)|^{2} dt$ and the equality holds when y(t)=Cx(t), C: any constant

BANDLIMITED SIGNALING IN AWGN WITH ZERO ISI

$$\Rightarrow \text{ zero ISI when: } h(mT) = \begin{cases} h_0 & m = 0 \\ 0 & m \neq 0 \end{cases} \text{ in time domain}$$
$$\Rightarrow \text{ Nyquist theorem: H(f) satisfies } \sum_{m=-\infty}^{\infty} H\left(f + \frac{m}{T}\right) = h_0 \text{T: constant}$$
in frequency domain

DERIVATION:

$$\begin{split} h(mT) &= \int_{-\infty}^{+\infty} H(f) e^{j2\pi nTf} df = \sum_{k=-\infty}^{+\infty} \int_{(2k-1)/2T}^{(2k+1)/2T} H(f) e^{j2\pi nTf} df = \sum_{k=-\infty}^{+\infty} \int_{-1/2T}^{+1/2T} H(\lambda + \frac{k}{T}) e^{j2\pi nT\lambda} d\lambda \\ &= \int_{-1/2T}^{+1/2T} Z(\lambda) e^{j2\pi nT\lambda} d\lambda, \quad \text{with} \quad Z(\lambda) = \sum_{k=-\infty}^{+\infty} H(\lambda + \frac{k}{T}) \end{split}$$

 $Z(\lambda)$ is periodic function of λ with period 1/T, hence can be represented in a Fourier series, i.e., $Z(\lambda) = \sum_{n=-\infty}^{+\infty} z_n e^{j2\pi nT\lambda}$ with $z_n = T \int_{-1/2T}^{1/2T} Z(\lambda) e^{-j2\pi nT\lambda} d\lambda$ \Rightarrow h(mT)=z_{-m}/T, i.e., for $h(mT) = \begin{cases} h_0 & m = 0 \\ 0 & m \neq 0 \end{cases}$ we need $Z(\lambda) = \sum_{k=\infty}^{\infty} H\left(\lambda + \frac{k}{T}\right) = Th_0$: constant

Consider simple, ideal, strictly bandlimited $H(f) = \begin{cases} H_0 & \text{for } |f| \le \frac{2}{2} \\ 0 & \text{for } |f| > \frac{B}{2} \end{cases}$

what is the narrowest bandwidth (B) such that h(mT)=0 for $m\neq 0$? or H(f) satisfies $\sum_{m=-\infty}^{\infty} H\left(f + \frac{m}{T}\right) = T$ constant $h(t) = \int_{-B/2}^{+B/2} ae^{+j2\pi ft} df = \frac{a}{j2\pi t}\Big|_{t=-B/2}^{t=+B/2}$ $= \frac{aB\sin\pi Bt}{\pi Bt} = aB\operatorname{sinc}(Bt)$

 \Rightarrow time-domain: h(0)=aB, h(m/B)=0 frequency-domain:

 \Rightarrow B=1/T: **minimum** BW for zero ISI

BUT THE IDEAL "BRICK-WALL" FILTER WITH RECTANGULAR FREQUENCY RESPONSE IS NOT PHYSICALLY REALIZABLE!

Responses of a raised-cosine filter to an input sequence of: $\partial(t), \partial(t-2T), \partial(t-3T), \partial(t-8T)$

SPECTRA OF Tx SIGNALS USING RRC FILTERS:

EYE DIAGRAMS:

Examples of eye patterns for

EYE DIAGRAMS FOR RAISED-COSINE FILTER:

EYE DIAGRAMS FOR RAISED-COSINE FILTER:

DESIGN OF Tx AND Rx FILTERS FOR BANDLIMITED TRANSMISSION IN AWGN CHANNELS WITH ZERO ISI

For maximum output SNR, select: $G_R(f) = G^*(f)e^{-j\omega T}$ For zero ISI in y(kT), select: H(f)= $G_R(f)G^*(f)=R(f,\alpha)$: raised-cosine (RC)

⇒ optimum partition: linear-phase Tx and Rx filters with **root raised cosine (RRC)** amplitude response, i.e., $G(f) = [R(f,\alpha)]^{1/2}e^{j2\pi f\tau}$ and $G_R(f) = [R(f,\alpha)]^{1/2}e^{j2\pi fd}$ where τ and d: constant **group delay**

Tx signal: $v(t) = \sum_{n=-\infty}^{\infty} I_n g(t-nT)$, avg. Tx power: $P_{avg} = \frac{\sigma_I^2}{T} \int_{-\infty}^{\infty} |G(f)|^2 df = \frac{\sigma_I^2}{T} \int_{-\infty}^{\infty} |R(f,\alpha)| df = \frac{\sigma_I^2}{T}$ Avg energy per symbol: $E_s = TP_{avg} = \sigma_I^2$. Rx sample $y(kT) = I_k + n_k$ since $h_0 = h(0) = 1$, I_k : signal sample

n_k: Gaussian noise sample with zero mean, variance: $\int_{-\infty}^{+\infty} \frac{N_o}{2} |G_R(f)|^2 df = \frac{N_o}{2}$

$$E\{n_{k}n_{l}\} = E\{\int_{-\infty-\infty}^{+\infty+\infty} w(x)w(y)g_{R}(kT-x)g_{R}(lT-y)dxdy\} = \frac{N_{o}}{2}\int_{-\infty-\infty}^{+\infty+\infty} \partial(x-y)g_{R}(kT-x)g_{R}(lT-y)dxdy$$
$$= \frac{N_{o}}{2}\int_{-\infty}^{+\infty} g_{R}(kT-x)g_{R}(lT-x)dx = \frac{N_{o}}{2}\int_{-\infty}^{+\infty} g_{R}(t)g_{R}([l-k]T-t)dt = \frac{N_{o}}{2}h([l-k]T) = \frac{N_{o}}{2}\partial([l-k]T)$$

Example: bandlimited M-ASK

 $I_{k} \in \{A(2n-1-M), n=1,2,...,M\} E_{s} = TP_{avg} = \sigma_{1}^{2} = A^{2}(M^{2}-1)/3$ Rx sample y(kT) = $I_{k} + n_{k}$ I_{k} : signal sample with $d_{min} = 2A$ or $[d_{min}]^{2} = 12E_{s}/(M^{2}-1)$ Performance: same as the time-limited case: $P_{e} = \left[1 - \frac{1}{M}\right] erfc \left[\sqrt{\frac{3}{M^{2} - 1} \frac{E_{s}}{N_{c}}}\right]$

OPTIMUM PARTITION OF Tx/Rx FILTERS FOR BANDLIMITED TRANSMISSION IN AWGN CHANNELS WITH ZERO ISI: CASE OF INPUT RECTANGULAR PULSES

GENERAL CASE: $p(t) \leftrightarrow P(f)$: Fourier transform of p(t) Tx filter $|H_T(x)| = \sqrt{R(x,\alpha)} / |P(x)|$ Rcv filter $|H_R(x)| = \sqrt{R(x,\alpha)}$ overall channel transfer function $|H(x)| = |H_T(x)| |H_R(x)| = |R(x,\alpha) / P(x)|$

EXAMPLE OF FILTERING REQUIREMENTS: INTELSAT V TDMA/QPSK

Carrier frequency: $f_c=140$ MHz Tx bit rate: $f_b=120.832$ MHz Nyquist frequency: $f_N = f_S/2=30.208$ MHz Raised cosine f

Raised cosine filter with $\alpha = 0.4$

EFFECTS OF AMPLITUDE AND PHASE DISTORTIONS ON RECEIVER PERFORMANCE

(from T. Noguchi, Y. Daido, J.A. Nossek, "Modulation Techniques for Microwave Digital Radio", *IEEE Communications Magazine*, October 1986, pp. 21-30)

