# SPREAD-SPECTRUM TECHNIQUES: A BRIEF OVERVIEW

### **SS: AN OVERVIEW**

- Spread Spectrum (SS) is a means of transmission in which the signal occupies a bandwidth in excess of the minimum necessary to send the information.
- Wideband FM could be classified as a SS technique. RF spectrum produced is much wider than baseband signal. FM "Processing Gain": SNR<sub>out</sub>=3β<sup>2</sup>SNR<sub>in</sub>

 $\beta = \Delta f/fm$ : MODULATION INDEX (DEVIATION RATIO)

FM Bandwidth (Carson's rule):

 $BW = 2fm (1 + \beta)$ 

- The bandwidth spread is accomplished by means of a code which is independent of the data, and a synchronized reception with the code at the receiver is used for de-spreading and subsequent data recovery.
- SS can hide signal below noise (DS) or makes it hard to track (FH):
  - Direction Sequence (DS): Modulated signal multiplied by faster chip sequence
  - Frequency Hopping (FH): Narrowband signal hopped over wide bandwidth
- Also used as a multiple access technique

#### A SIMPLIFIED VIEW FROM CAPACITY FORMULA



### **REASONS FOR SPREAD SPECTRUM:**

- Anti-Jamming
- Anti-Interference (e.g., multipath distortion)
- Low Probability of intercept (LPI) (or detector LPD): LPD communication systems are designed to make their detection as difficult as possible by anyone but the intended receiver.
- Multiple-Access Communications: Several users can independently use the same higher bandwidth with very little interference
- High Resolution Ranging (e.g. GPS)
- Accurate Universal Timing

#### **DIRECT-SEQUENCE SPREAD SPECTRUM TECHNIQUES:**

Fast pseudo-randomly generated sequence causes phase transitions in the carrier containing data.





#### EXAMPLE OF DS SPREADING AND DESPREADING

### **DIRECT-SEQUENCE BPSK**



### **DS-QPSK**

- DS-QPSK has same performance as DS-BPSK, but uses one-half the transmission bandwidth.
- It is more difficult to detect (Low Probability of detection, LPD, applications)
  It is less sensitive to some types of jamming.



# **FREQUENCY-HOPPING (FH)**

Carrier is caused to shift frequency in a pseudo-random manner.



manner.

#### **EXAMPLE OF FH-4FSK**



### **HYBRID DS/FH TECHNIQUES:**



(b) Receiver



#### **DS AND FH SYSTEMS**

•NEED OF ERROR CORRECTION CODING IN FH SYSTEMS: Given a large-power jammer in a frequency slot, errors will occur every time this slot is used. This yields an average error probability of i/N where N is the number of frequency slots over which the signal can hop. Error correction coding is needed to overcome this problem DS can have more synchronization difficulties due to high-speed operation and long initial acquisition time. DS spectrum looks relatively uniform (except for very short codes).

#### **SPECTRA OF MODULATED & SS SIGNALS**



# **SINGLE-TONE JAMMER**



Single-tone jammer is at the center frequency.

Without SS, the signal-to-jammer power ratio is exactly S/J.

With SS, the signal-to-jammer power ratio after de-spreading (at demodulator input after IF filtering) is increased to  $P_G[S/J]$ , i.e., improved by a factor equal to the **processing gain**.

# **PULSE-NOISE JAMMING**

Main signal: Tx bit rate R, energy per bit:  $E_{h}$ , average power:  $S=E_{h}R$ , PULSE-NOISE JAMMER: transmits pulses of band-limited white Gaussian noise with total average power J referred to the receiver front-end. Pulse duty factor: e Bandwidth: W (Transmission bandwidth), jamming power spectra density:  $J_0 = J/[eW]$ 

### WITHOUT SS: W=R

Bit error probability of a coherent BPSK in an AWGN environment:

$$P_b = Q\left(\sqrt{2E_b / N_o}\right)$$

During the pulse-noise jamming:  $\begin{bmatrix} E_b / N_o \end{bmatrix} \Rightarrow \begin{bmatrix} E_b / (N_o + J_o) \end{bmatrix} = \left( \begin{bmatrix} N_o / E_b \end{bmatrix} + \begin{bmatrix} J / S \end{bmatrix} \right)^{-1}$ 

Average bit error probability with pulse-noise jamming:

$$P_{bJ} = (1 - e)Q\left(\sqrt{2E_b / N_o}\right) + eQ\left(\sqrt{2E_b / [N_o + J_o]}\right)$$

The jammer selects emax to maximize Pb!

$$P_{bJ,\max} \approx \left(\sqrt{2\pi e} \left[ E_b / (J/W) \right] \right)^{-1}$$

### processing gain with SS

Pulse-noise jammer with wide bandwidth:  $W = R_c$  (transmission bandwidth) With SS: **processing gain**  $P_G = R_c/R$ During the pulse-noise jamming:

 $\begin{bmatrix} E_b / N_o \end{bmatrix} \Rightarrow \begin{bmatrix} E_b / (N_o + J_o) \end{bmatrix} = \left( \begin{bmatrix} N_o / E_b \end{bmatrix} + \left[ (J / eR_c) / (S / R) \end{bmatrix} \right)^{-1} = \left( \begin{bmatrix} N_o / E_b \end{bmatrix} + \left[ (J / eS) / P_G \end{bmatrix} \right)^{-1}$   $P_G >> 1 \Rightarrow \left[ (J / eS) / P_G \end{bmatrix} \approx 0 \text{ (greatly reduced), } \begin{bmatrix} J / S \end{bmatrix} \text{: Jammer-to-Signal Power Ratio}$ 

The **jamming margin** is the largest value that the ratio J/S can take and still satisfy the specified performance (error probability).



#### **Code-Division Multiple Access (CDMA) using DS**