Fading Channels: Modeling ECSE413B - Communications Systems II - Winter 2008

Prof. Tho Le-Ngoc

Department of Electrical & Computer Engineering McGill University

29th January 2008

Prof. Tho Le-Ngoc (McGill University)

Fading Channels: Modeling

Lecture I 1 / 30

1. To understand key physical parameters:

- Delay Spread and Coherence Bandwidth
- Doppler Spread and Coherence Time

2. To understand different types of fading:

- *Frequency flat* (or non-selective) fading or *frequency selective* fading
- Slow (or time flat) fading or fast (or time selective) fading

1. To understand key physical parameters:

- Delay Spread and Coherence Bandwidth
- Doppler Spread and Coherence Time

2. To understand different types of fading:

- Frequency flat (or non-selective) fading or frequency selective fading
- Slow (or time flat) fading or fast (or time selective) fading

• • • • • • • • • • • • •

1. To understand key physical parameters:

- Delay Spread and Coherence Bandwidth
- Doppler Spread and Coherence Time

2. To understand different types of fading:

- Frequency flat (or non-selective) fading or frequency selective fading
- Slow (or time flat) fading or fast (or time selective) fading

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

1. To understand key physical parameters:

- Delay Spread and Coherence Bandwidth
- Doppler Spread and Coherence Time

2. To understand different types of fading:

- Frequency flat (or non-selective) fading or frequency selective fading
- Slow (or time flat) fading or fast (or time selective) fading

- 3 Two-Path Model: Fixed Antenna
- 4 Two-Path Model: Moving Antenna

Prof. Tho Le-Ngoc (McGill University)

Free Space Model: Fixed Antenna

Free Space Model: Moving Antenna

Two-Path Model: Fixed Antenna

Prof. Tho Le-Ngoc (McGill University)

Free Space Model: Fixed Antenna

Free Space Model: Moving Antenna

Two-Path Model: Fixed Antenna

Prof. Tho Le-Ngoc (McGill University)

Free Space Model: Fixed Antenna

Free Space Model: Moving Antenna

Two-Path Model: Fixed Antenna

Two-Path Model: Moving Antenna

Wireless Fading Channels

Free Space Model: Fixed Antenna

Free Space Model: Moving Antenna

Two-Path Model: Fixed Antenna

Two-Path Model: Moving Antenna

Wireless Fading Channels

Free Space Model: Fixed Antenna

- Free Space Model: Moving Antenna
- 3 Two-Path Model: Fixed Antenna
- 4 Two-Path Model: Moving Antenna

Free Space Model: Fixed Antenna

• Input signal at transmitter: $x(t) = \cos 2\pi ft$. What is received signal at receiver (in the absence of Gaussian noise)?

$$y(t) = rac{lpha \cos 2\pi f(t - r/c)}{r}, \quad c:$$
 Speed of light

τ = *r*/*c*: time to travel from transmitter to receiver→ Delay
 α: antenna patterns, e.g., antenna gains, assumed constant

• r in the denominator: Due to the decrease of electric field

• Rewrite the received signal: $y(t) = ax(t - \tau)$

- $a = \alpha/r$: attenuation of the signal
- $\tau = r/c$: delay of the signal

Prof. Tho Le-Ngoc (McGill University)

< ロ > < 同 > < 三 > < 三 >

Free Space Model: Fixed Antenna

• Input signal at transmitter: $x(t) = \cos 2\pi ft$. What is received signal at receiver (in the absence of Gaussian noise)?

$$y(t) = \frac{\alpha \cos 2\pi f(t - r/c)}{r}, \quad c:$$
 Speed of light

• $\tau = r/c$: time to travel from transmitter to receiver \rightarrow Delay

- α: antenna patterns, e.g., antenna gains, assumed constant
- r in the denominator: Due to the decrease of electric field

Free Space Model: Fixed Antenna

• Input signal at transmitter: $x(t) = \cos 2\pi ft$. What is received signal at receiver (in the absence of Gaussian noise)?

$$y(t) = \frac{\alpha \cos 2\pi f(t - r/c)}{r}, \quad c:$$
 Speed of light

• $\tau = r/c$: time to travel from transmitter to receiver \rightarrow Delay

- α: antenna patterns, e.g., antenna gains, assumed constant
- r in the denominator: Due to the decrease of electric field

• Rewrite the received signal: $y(t) = ax(t - \tau)$

- $a = \alpha/r$: attenuation of the signal
- $\tau = r/c$: delay of the signal

Prof. Tho Le-Ngoc (McGill University)

Free Space Model: Moving Antenna

3 Two-Path Model: Fixed Antenna

Prof. Tho Le-Ngoc (McGill University)

• Distance $r(t) = r_0 + vt$ depends on t. The received signal:

$$y(t) = \frac{\alpha \cos 2\pi f(t - r(t)/c)}{r(t)} = a(t)x(t - \tau(t))$$

Remark: Attenuation $a(t) = \frac{\alpha}{r(t)}$ and delay $\tau(t) = \frac{r(t)}{c}$ depend on t

• Substitute $r(t) = r_0 + vt$,

$$y(t) = a(t)\cos 2\pi f\left((1-\frac{v}{c})t - r_0/c\right)$$

The frequency is shifted an amount of −*fv*/*c*: from *f* to *f* − *fv*/*c* −*fv*/*c* is called Doppler shift *f_D*, due to motion

• Distance $r(t) = r_0 + vt$ depends on *t*. The received signal:

$$y(t) = \frac{\alpha \cos 2\pi f(t - r(t)/c)}{r(t)} = a(t)x(t - \tau(t))$$

Remark: Attenuation $a(t) = \frac{\alpha}{r(t)}$ and delay $\tau(t) = \frac{r(t)}{c}$ depend on t• Substitute $r(t) = r_0 + vt$,

$$y(t) = a(t)\cos 2\pi f\left((1-\frac{v}{c})t - r_0/c\right)$$

• The frequency is shifted an amount of -fv/c: from f to f - fv/c• -fv/c is called Doppler shift f_D , due to motion

• Distance $r(t) = r_0 + vt$ depends on *t*. The received signal:

$$y(t) = \frac{\alpha \cos 2\pi f(t - r(t)/c)}{r(t)} = a(t)x(t - \tau(t))$$

Remark: Attenuation $a(t) = \frac{\alpha}{r(t)}$ and delay $\tau(t) = \frac{r(t)}{c}$ depend on t

• Substitute $r(t) = r_0 + vt$,

$$y(t) = a(t)\cos 2\pi f\left(\frac{1-\frac{v}{c}}{c}t - r_0/c\right)$$

• The frequency is shifted an amount of -fv/c: from f to f - fv/c• -fv/c is called Doppler shift f_D , due to motion

• Distance $r(t) = r_0 + vt$ depends on *t*. The received signal:

$$y(t) = \frac{\alpha \cos 2\pi f(t - r(t)/c)}{r(t)} = a(t)x(t - \tau(t))$$

Remark: Attenuation $a(t) = \frac{\alpha}{r(t)}$ and delay $\tau(t) = \frac{r(t)}{c}$ depend on t

• Substitute $r(t) = r_0 + vt$,

$$y(t) = a(t)\cos 2\pi f\left(\left(1 - \frac{v}{c}\right)t - r_0/c\right)$$

- The frequency is shifted an amount of -fv/c: from f to f fv/c
- -fv/c is called Doppler shift f_D , due to motion

What happens if receiver moves toward transmitter?

- The frequency is shifted an amount of +fv/c: from f to f + fv/c, e.g., higher frequency
- Doppler shift is now $f_D = +fv/c$

Doppler shift: Example with siren from an ambulance

- When it moves toward us, we hear higher frequency siren
- When it passes us, we hear a rapid shift to a lower frequency

What happens if receiver moves toward transmitter?

- The frequency is shifted an amount of +fv/c: from f to f + fv/c, e.g., higher frequency
- Doppler shift is now $f_D = +fv/c$

• Doppler shift: Example with siren from an ambulance

- When it moves toward us, we hear higher frequency siren
- When it passes us, we hear a rapid shift to a lower frequency

• • • • • • • • • • • •

• What happens if receiver moves toward transmitter?

- The frequency is shifted an amount of +fv/c: from f to f + fv/c, e.g., higher frequency
- Doppler shift is now $f_D = +fv/c$
- Doppler shift: Example with siren from an ambulance
 - When it moves toward us, we hear higher frequency siren
 - When it passes us, we hear a rapid shift to a lower frequency

A D N A B N A B N

- In the previous cases, we consider that the arrival of angle of the received signal relative to the direction of motion is 0 or π. What happens if this angle is θ, as shown above?
- In Δ_t , receiver can travel $v\Delta_t$ in the direction of motion. That makes a change in distance $\Delta_d = v\Delta_t \cos(\theta)$ in the direction of received signal. Therefore, the Doppler shift is:

• Receiver moving toward transmitter: f_D is positive, otherwise it is negative. The above example: positive when $-\pi/2 \le \theta \le \pi/2$

- In the previous cases, we consider that the arrival of angle of the received signal relative to the direction of motion is 0 or π. What happens if this angle is θ, as shown above?
- In Δ_t, receiver can travel vΔ_t in the direction of motion. That makes a change in distance Δ_d = vΔ_t cos(θ) in the direction of received signal. Therefore, the Doppler shift is:

$$f_D = \pm \frac{f_V}{c} \cos(\theta)$$

• Receiver moving toward transmitter: f_D is positive, otherwise it is negative. The above example: positive when $-\pi/2 \le \theta \le \pi/2$

- Free Space Model: Fixed Antenna
- Free Space Model: Moving Antenna
- 3 Two-Path Model: Fixed Antenna
- 4 Two-Path Model: Moving Antenna
- 5 Wireless Fading Channels

Constructive and Destructive Interference

- Two sinusoid signals with phase difference is an integer multiple of 2π: They add constructively
- Two sinusoid signals with phase difference is an odd integer multiple of π: They add destructively

• With $x(t) = \cos 2\pi ft$, received signal is superposition of two paths: $y(t) = \frac{\alpha \cos 2\pi f(t - r/c)}{r} - \frac{\alpha \cos 2\pi f(t - (2d - r)/c)}{2d - r}$

 y(t) can be re-written as y(t) = a₁x(t - τ₁) + a₂x(t - τ₂) a₁ = α/r; τ₁ = r/c: attenuation and delay of Path 1 a₂ = α/(2d-r); τ₂ = (2d - r)/c - π/(2πf): attenuation and delay of Path 2
 Paths add constructively or destructively, due to phase difference:

$$\Delta \theta = 2\pi f(\tau_2 - \tau_1) = \frac{4\pi f}{c}(d - r) - \pi$$

 $a_1 = \alpha/r$; $\tau_1 = r/c$: attenuation and delay of Path 1

 $a_2 = \frac{\alpha}{(2d-r)}; \tau_2 = (2d-r)/c - \frac{\pi}{2\pi f}$: attenuation and delay of Path 2

• Paths add constructively or destructively, due to phase difference:

$$\Delta \theta = 2\pi f(\tau_2 - \tau_1) = \frac{4\pi f}{c}(d - r) - \pi$$

Lecture I 12 / 30

$$y(t) = \frac{1}{r} - \frac{1}{2d-r}$$

• y(t) can be re-written as $y(t) = a_1x(t - \tau_1) + a_2x(t - \tau_2)$ $a_1 = \alpha/r; \tau_1 = r/c$: attenuation and delay of Path 1 $a_2 = \frac{\alpha}{(2d-r)}; \tau_2 = (2d - r)/c - \frac{\pi}{2\pi f}$: attenuation and delay of Path 2 • Paths add constructively or destructively, due to phase difference:

$$\Delta \theta = 2\pi f(\tau_2 - \tau_1) = \frac{4\pi f}{c}(d - r) - \pi$$

Prof. Tho Le-Ngoc (McGill University)

• With $x(t) = \cos 2\pi ft$, received signal is superposition of two paths: $\alpha \cos 2\pi f(t - r/c) \qquad \alpha \cos 2\pi f(t - (2d - r)/c)$

$$y(t) = \frac{a \cos 2\pi j (t - r/c)}{r} - \frac{a \cos 2\pi j (t - (2a - r)/c)}{2d - r}$$

y(t) can be re-written as y(t) = a₁x(t - τ₁) + a₂x(t - τ₂)
 a₁ = α/r; τ₁ = r/c: attenuation and delay of Path 1
 a₂ = α/((2d-r)); τ₂ = (2d - r)/c - π/(2πf): attenuation and delay of Path 2
 Paths add constructively or destructively, due to phase difference:

$$\Delta\theta = 2\pi f(\tau_2 - \tau_1) = \frac{4\pi f}{c}(d - r) - \pi$$

Prof. Tho Le-Ngoc (McGill University)

Two-Path Model: Fixed Antenna (Cont.)

$$\Delta \theta = 2\pi f(\tau_2 - \tau_1) = \frac{4\pi f}{c}(d - r) - \pi$$

• Consider $\Delta \theta$ as a function of *r*:

- If at $r = r_1$, two paths add constructively, i.e., y(t) is at peak, then at $r = r_1 \pm \frac{c}{4f}$, two paths add destructively, i.e., y(t) is at valley? Why? You can look at the phase difference for two cases.
- $\frac{c}{4f} = \frac{\lambda}{4}$ is called Coherence Distance: Distance from peak to valley
- Now consider $\Delta \theta = 2\pi f(\tau_2 \tau_1)$ as a function of *f*:
 - $T_d = |\tau_2 \tau_1|$ -*Delay Spread*: Difference between delays along two paths
 - Assume at $f = f_1$, two path adds constructively. It can be verified that at $f = f_1 \pm \frac{1}{2T_d}$, two path adds destructively
 - Therefore, The signal y(t) does not change significantly if frequency f changes by an amount much smaller than $B_h = \frac{1}{2T_d}$: Coherence Bandwidth

Two-Path Model: Fixed Antenna (Cont.)

$$\Delta \theta = 2\pi f(\tau_2 - \tau_1) = \frac{4\pi f}{c}(d - r) - \pi$$

• Consider $\Delta \theta$ as a function of *r*:

- If at $r = r_1$, two paths add constructively, i.e., y(t) is at peak, then at $r = r_1 \pm \frac{c}{4f}$, two paths add destructively, i.e., y(t) is at valley? Why? You can look at the phase difference for two cases.
- $\frac{c}{4f} = \frac{\lambda}{4}$ is called Coherence Distance: Distance from peak to valley
- Now consider $\Delta \theta = 2\pi f(\tau_2 \tau_1)$ as a function of *f*:
 - $T_d = |\tau_2 \tau_1|$ -*Delay Spread*: Difference between delays along two paths
 - Assume at $f = f_1$, two path adds constructively. It can be verified that at $f = f_1 \pm \frac{1}{2T_d}$, two path adds destructively
 - Therefore, The signal y(t) does not change significantly if frequency f changes by an amount much smaller than $B_h = \frac{1}{2T_d}$: Coherence Bandwidth

- Free Space Model: Fixed Antenna
- Free Space Model: Moving Antenna
- 3 Two-Path Model: Fixed Antenna
- 4
- Two-Path Model: Moving Antenna
- 5 Wireless Fading Channels

∃ >

• With $x(t) = \cos 2\pi ft$, received signal is superposition of two paths $y(t) = a_1(t)x(t - \tau_1(t)) + a_2(t)x(t - \tau_2(t))$

 $a_1(t) = \frac{\alpha}{r_0 + vt}, \tau_1(t) = \frac{r_0 + vt}{c}; \ a_2(t) = \frac{\alpha}{2d - r_0 - vt}, \tau_2(t) = \frac{2d - r_0 - vt}{c} - \frac{1}{2f}$ • Due to motion:

- Attenuations and delays depend t
- Path 1: Doppler Shift of -fv/c; Path 2: Doppler Shift of $+fv/c \rightarrow$ Frequency can be shifted by an amount of $D_s = 2fv/c$ from f - fv/cto f + fv/c: Doppler Spread

• Coherence Distance $\frac{c}{4f} = \frac{\lambda}{4}$: Distance from Peak to Valley. With velocity *v*, how long does this take to travel from Peak to Valley? It is Coherence Time $T_c = \frac{c}{4fv}$

is Coherence Time $T_c = \frac{c}{4f}$

Prof. Tho Le-Ngoc (McGill University)

• With $x(t) = \cos 2\pi ft$, received signal is superposition of two paths $y(t) = a_1(t)x(t - \tau_1(t)) + a_2(t)x(t - \tau_2(t))$

$$a_1(t) = \frac{\alpha}{r_0 + vt}, \tau_1(t) = \frac{r_0 + vt}{c}; \quad a_2(t) = \frac{\alpha}{2d - r_0 - vt}, \tau_2(t) = \frac{2d - r_0 - vt}{c} - \frac{1}{2f}$$

Due to motion:

- Attenuations and delays depend t
- Path 1: Doppler Shift of -fv/c; Path 2: Doppler Shift of $+fv/c \rightarrow$ Frequency can be shifted by an amount of $D_s = 2fv/c$ from f - fv/cto f + fv/c: Doppler Spread

• Coherence Distance $\frac{c}{4f} = \frac{\lambda}{4}$: Distance from Peak to Valley. With velocity v, how long does this take to travel from Peak to Valley? It is Coherence Time $T_c = \frac{c}{4fv}$

• With $x(t) = \cos 2\pi ft$, received signal is superposition of two paths $y(t) = a_1(t)x(t - \tau_1(t)) + a_2(t)x(t - \tau_2(t))$ $a_1(t) = \frac{\alpha}{r_0 + vt}, \tau_1(t) = \frac{r_0 + vt}{c}; \ a_2(t) = \frac{\alpha}{2d - r_0 - vt}, \tau_2(t) = \frac{2d - r_0 - vt}{c} - \frac{1}{2t}$

- Due to motion:
 - Attenuations and delays depend t
 - Path 1: Doppler Shift of -fv/c; Path 2: Doppler Shift of $+fv/c \rightarrow$ Frequency can be shifted by an amount of $D_s = 2fv/c$ from f - fv/cto f + fv/c: Doppler Spread

• Coherence Distance $\frac{c}{4f} = \frac{\lambda}{4}$: Distance from Peak to Valley. With

• With $x(t) = \cos 2\pi ft$, received signal is superposition of two paths $y(t) = a_1(t)x(t - \tau_1(t)) + a_2(t)x(t - \tau_2(t))$ $a_1(t) = \frac{\alpha}{r_0 + vt}, \tau_1(t) = \frac{r_0 + vt}{c}; \quad a_2(t) = \frac{\alpha}{2d - r_0 - vt}, \tau_2(t) = \frac{2d - r_0 - vt}{c} - \frac{1}{2t}$

Due to motion:

- Attenuations and delays depend t
- Path 1: Doppler Shift of -fv/c; Path 2: Doppler Shift of $+fv/c \rightarrow$ Frequency can be shifted by an amount of $D_s = 2fv/c$ from f - fv/cto f + fv/c: Doppler Spread
- Coherence Distance $\frac{c}{4f} = \frac{\lambda}{4}$: Distance from Peak to Valley. With velocity v, how long does this take to travel from Peak to Valley? It is Coherence Time $T_c = \frac{c}{4fv}$

- Coherence Time T_c : Time to travel from Peak to Valley \rightarrow In a given amount of time much smaller than T_c , signal does not change significantly
- Coherence Time $T_c = \frac{c}{4fv}$ and Doppler Spread $D_s = 2fv/c$. We then can see that $D_s = \frac{1}{2T_c}$. Does it have some meanings?
- To see the relation, let assume lengths of two paths be almost the same. Then the signal *y*(*t*) is given as:

$$y(t) = a_1(t)x(t - \tau_1(t)) + a_2(t)x(t - \tau_2(t)) \\\approx \frac{2\alpha \sin 2\pi f \left[vt/c + (r_0 - d)/c \right] \sin 2\pi f \left[t - d/c \right]}{r_0 + vt}$$

It is the product of two sinusoids, whose frequencies are of the order GHz (*f*) and Hz ($fv/c = D_s/2$).

Lecture I 16 / 30

- Coherence Time T_c : Time to travel from Peak to Valley \rightarrow In a given amount of time much smaller than T_c , signal does not change significantly
- Coherence Time $T_c = \frac{c}{4fv}$ and Doppler Spread $D_s = 2fv/c$. We then can see that $D_s = \frac{1}{2T_c}$. Does it have some meanings?
- To see the relation, let assume lengths of two paths be almost the same. Then the signal *y*(*t*) is given as:

$$y(t) = a_1(t)x(t - \tau_1(t)) + a_2(t)x(t - \tau_2(t))$$

$$\approx \frac{2\alpha \sin 2\pi f \left[vt/c + (r_0 - d)/c \right] \sin 2\pi f \left[t - d/c \right]}{r_0 + vt}$$

It is the product of two sinusoids, whose frequencies are of the order GHz (*f*) and Hz ($fv/c = D_s/2$).

- Coherence Time T_c : Time to travel from Peak to Valley \rightarrow In a given amount of time much smaller than T_c , signal does not change significantly
- Coherence Time $T_c = \frac{c}{4fv}$ and Doppler Spread $D_s = 2fv/c$. We then can see that $D_s = \frac{1}{2T_c}$. Does it have some meanings?
- To see the relation, let assume lengths of two paths be almost the same. Then the signal *y*(*t*) is given as:

$$y(t) = a_1(t)x(t - \tau_1(t)) + a_2(t)x(t - \tau_2(t))$$

$$\approx \frac{2\alpha \sin 2\pi f \left[vt/c + (r_0 - d)/c \right] \sin 2\pi f \left[t - d/c \right]}{r_0 + vt}$$

It is the product of two sinusoids, whose frequencies are of the order GHz (f) and Hz ($fv/c = D_s/2$).

- y(t) oscillating at frequency f with a slowly varying envelope at frequency $D_s/2$
- From Peak of envelope to Valley of envelope: Coherence Time
- The *Doppler Spread* is the rate of traversal across the Peaks and Valley → Inversely proportional to the *Coherence Time*

Prof. Tho Le-Ngoc (McGill University)

Two-Path Model: Summary

- The significant change of the received signal *y*(*t*) is due to the phase changes.
- The received signal y(t) can changes significantly when f changes by $B_h = \frac{1}{2T_d}$, where T_d , *Delay Spread*, is the difference between the delays of two paths. B_h is called *Coherence Bandwidth*
- Due to the motion:
 - Each path has its own Doppler Shift D_i , i = 1, 2 and one has the Doppler Spread $D_s = |D_1 D_2|$.
 - The received signal y(t) can also changes significantly when t changes $T_c = \frac{1}{2D_s}$, which is called *Coherence Time*
- The arguments here can be extended to the case of *multi-path fading channels*, where we have many (physical) paths

イロン イロン イヨン イヨン

- Free Space Model: Fixed Antenna
- Free Space Model: Moving Antenna
- 3 Two-Path Model: Fixed Antenna
- 4
- Two-Path Model: Moving Antenna

Wireless Communications

Multiple received versions of the same transmitted signal caused by reflections \rightarrow *multipath*

Prof. Tho Le-Ngoc (McGill University)

Fading Channels: Modeling

Lecture I 20 / 30

Wireless Fading Channels

- With many paths, they might add destructively or constructively: channel strengths change *randomly* with time → Fading
- When channel is weak, i.e., bad quality→Low reliability

Prof. Tho Le-Ngoc (McGill University)

Fading Channels: Modeling

Lecture I 21 / 30

Input/Output Model

• With input *x*(*t*), output *y*(*t*) is:

$$y(t) = \sum_{i} a_i(t) x(t - \tau_i(t))$$

where $a_i(t)$ and $\tau_i(t)$ are attenuation and delay of path *i*th. Note: path *i*th refers to a physical path and there are so many of them.

The input/output relationship is now written as:

$$y(t) = \int_{-\infty}^{+\infty} h(\tau, t) x(t - \tau) d\tau$$

with impulse response $h(\tau, t) = \sum_{i} a_i(t)\delta(\tau - \tau_i(t))$: the response $h(t, \tau)$ at time *t* to an impulse transmitted at time $t - \tau$

- In general, a_i(t) & τ_i(t) depend on t→ (Linear) time-variant channel.
- The time-varying frequency response:

$$H(f;t) = \int_{-\infty}^{+\infty} h(\tau,t) \exp(-j2\pi f\tau) d\tau = \sum_{i} a_i(t) \exp(-j2\pi f\tau_i(t))$$

Prof. Tho Le-Ngoc (McGill University)

Key Physical Parameters

Different {*τ_i*(*t*)} → *x*(*t*) is dispersive in time, which causes a so-called Inter-Symbol Interference (ISI)

• Delay Spread: $T_d = \max_{i,j} |\tau_i(t) - \tau_j(t)|$: Time delay between the arrival of the first received signal component and the last received signal component.

- By comparing T_d with symbol duration T, we have:
 - $T_d \ll T$, ISI is negligible \rightarrow frequency non-selective (or flat) fading
 - $T_d \gg T$, ISI is severe—*frequency selective* fading
 - But why we call it *frequency selective*?

- Basically, dispersion in time means selectivity in domain
- We know that the channel changes significantly is due to the phase change, which can be represented by $2\pi fT_d$. Given T_d ,
 - When *f* changes an amount of $B_h = \frac{1}{2T_d}$, $2\pi fT_d = \pi$ and channel changes significantly. B_h is called *Coherence Bandwidth* of the channel
 - Equivalently, if f changes an amount that is much smaller than B_h , we can consider channel stays the same
- Now, with symbol duration is T, the bandwidth occupied is $B \approx \frac{1}{T}$
 - If $T_d \gg T$, bandwidth $B = 1/T \gg B_h \rightarrow H(f)$ changes differently over band $B \rightarrow$ *frequency selective*

Channel Impulse Reponse

Frequency Response

• ISI in *t* domain is equivalent to frequency selectivity in *f* domain

- From the case of two-path, we know that channel not only changes over *f* but also change over *t*: *Coherence Time* and *Doppler Spread*
- Motion with velocity v(t):
 - Each path *i* has velocity v_i(t) with which the *i*th path length is increasing (or decreasing). The relation between v(t) and v_i(t) depends on the arrival of angle of the received signal on path *i*
 - Let $\tau_i'(t) = v_i(t)/c$. Doppler shift for each path *i*: $-f\tau_i'(t)$ (the path length is increasing) or $+f\tau_i'(t)$ (the path length is decreasing)
 - With center frequency *f_c*, *Doppler Spread* is the largest difference between Doppler shifts (counting paths that are not too weak):

$$D_s = \max_{i,i} f_c |\tau_i'(t) - \tau_j'(t)|$$

• Similar to two-path model, we have the *Coherence Time*:

 Note: one can replace the factor of 2 by 4, or even 8, depending on the view of phase change: Some consider π is significant, others might user π/2, π/4

Prof. Tho Le-Ngoc (McGill University)

- From the case of two-path, we know that channel not only changes over *f* but also change over *t*: *Coherence Time* and *Doppler Spread*
- Motion with velocity v(t):
 - Each path *i* has velocity v_i(t) with which the *i*th path length is increasing (or decreasing). The relation between v(t) and v_i(t) depends on the arrival of angle of the received signal on path *i*
 - Let $\tau_i'(t) = v_i(t)/c$. Doppler shift for each path *i*: $-f\tau_i'(t)$ (the path length is increasing) or $+f\tau_i'(t)$ (the path length is decreasing)
 - With center frequency *f_c*, *Doppler Spread* is the largest difference between Doppler shifts (counting paths that are not too weak):

$$D_{s} = \max_{i,j} f_{c} |\tau_{i}^{'}(t) - \tau_{j}^{'}(t)|$$

• Similar to two-path model, we have the *Coherence Time*:

Note: one can replace the factor of 2 by 4, or even 8, depending on the view of phase change: Some consider π is significant, others might user π/2, π/4

Prof. Tho Le-Ngoc (McGill University)

- From the case of two-path, we know that channel not only changes over *f* but also change over *t*: *Coherence Time* and *Doppler Spread*
- Motion with velocity v(t):
 - Each path *i* has velocity v_i(t) with which the *i*th path length is increasing (or decreasing). The relation between v(t) and v_i(t) depends on the arrival of angle of the received signal on path *i*
 - Let $\tau'_i(t) = v_i(t)/c$. Doppler shift for each path *i*: $-f\tau'_i(t)$ (the path length is increasing) or $+f\tau'_i(t)$ (the path length is decreasing)
 - With center frequency f_c , *Doppler Spread* is the largest difference between Doppler shifts (counting paths that are not too weak): $D_s = \max_c f_c |\tau_i'(t) - \tau_j'(t)|$
 - Similar to two-path model, we have the Coherence Time:

Note: one can replace the factor of 2 by 4, or even 8, depending on the view of phase change: Some consider π is significant, others might user π/2, π/4

Prof. Tho Le-Ngoc (McGill University)

- From the case of two-path, we know that channel not only changes over *f* but also change over *t*: *Coherence Time* and *Doppler Spread*
- Motion with velocity v(t):
 - Each path *i* has velocity v_i(t) with which the *i*th path length is increasing (or decreasing). The relation between v(t) and v_i(t) depends on the arrival of angle of the received signal on path *i*
 - Let $\tau'_i(t) = v_i(t)/c$. Doppler shift for each path *i*: $-f\tau'_i(t)$ (the path length is increasing) or $+f\tau'_i(t)$ (the path length is decreasing)
 - With center frequency *f_c*, *Doppler Spread* is the largest difference between Doppler shifts (counting paths that are not too weak):

$$D_{s} = \max_{i,j} f_{c} |\tau_{i}'(t) - \tau_{j}'(t)|$$

• Similar to two-path model, we have the *Coherence Time*:

 Note: one can replace the factor of 2 by 4, or even 8, depending on the view of phase change: Some consider π is significant, others might user π/2, π/4

Prof. Tho Le-Ngoc (McGill University)

- From the case of two-path, we know that channel not only changes over *f* but also change over *t*: *Coherence Time* and *Doppler Spread*
- Motion with velocity v(t):
 - Each path *i* has velocity v_i(t) with which the *i*th path length is increasing (or decreasing). The relation between v(t) and v_i(t) depends on the arrival of angle of the received signal on path *i*
 - Let $\tau'_i(t) = v_i(t)/c$. Doppler shift for each path *i*: $-f\tau'_i(t)$ (the path length is increasing) or $+f\tau'_i(t)$ (the path length is decreasing)
 - With center frequency *f_c*, *Doppler Spread* is the largest difference between Doppler shifts (counting paths that are not too weak):

$$D_s = \max_{i,j} f_c |\tau_i'(t) - \tau_j'(t)|$$

 $T_c = \frac{1}{2D_c}$

- Similar to two-path model, we have the *Coherence Time*:
- Note: one can replace the factor of 2 by 4, or even 8, depending on the view of phase change: Some consider π is significant, others might user $\pi/2$, $\pi/4$

Prof. Tho Le-Ngoc (McGill University)

Lecture I 25 / 30

- Recall in two-path model, *Coherence Time* T_c is defined as time to travel from Peak to Valley. Similarly, in multi-path model, T_c is defined as the interval over which the channel changes significantly as a function of t
- Coherence Time T_c & Doppler Spread D_s show how quickly channel changes over time, hence
 - Channels are often categorized as fast fading and slow fading
 - In general, if $T_c \gg \frac{1}{B}$, i.e., channel keeps constant over many symbol durations, we have *slow (or time flat) fading*. Otherwise, it is *fast (or time selective) fading*
 - Clearly, fast or slow not only depends on the environment but also on the application
- One also can compare *Coherence Time* T_c and *Delay Spread* T_d . Normally, T_d is of the order of microseconds, while it is of the order of microseconds for T_s : $T_d \ll T_c$ and it is called *underspread* channel

- Recall in two-path model, *Coherence Time* T_c is defined as time to travel from Peak to Valley. Similarly, in multi-path model, T_c is defined as the interval over which the channel changes significantly as a function of t
- Coherence Time T_c & Doppler Spread D_s show how quickly channel changes over time, hence
 - Channels are often categorized as fast fading and slow fading
 - In general, if $T_c \gg \frac{1}{B}$, i.e., channel keeps constant over many symbol durations, we have *slow (or time flat) fading*. Otherwise, it is *fast (or time selective) fading*
 - Clearly, fast or slow not only depends on the environment but also on the application
- One also can compare *Coherence Time* T_c and *Delay Spread* T_d . Normally, T_d is of the order of microseconds, while it is of the order of microseconds for T_s : $T_d \ll T_c$ and it is called *underspread* channel

- Recall in two-path model, *Coherence Time* T_c is defined as time to travel from Peak to Valley. Similarly, in multi-path model, T_c is defined as the interval over which the channel changes significantly as a function of t
- Coherence Time T_c & Doppler Spread D_s show how quickly channel changes over time, hence
 - Channels are often categorized as fast fading and slow fading
 - In general, if $T_c \gg \frac{1}{B}$, i.e., channel keeps constant over many symbol durations, we have *slow (or time flat) fading*. Otherwise, it is *fast (or time selective) fading*
 - Clearly, fast or slow not only depends on the environment but also on the application
- One also can compare *Coherence Time* T_c and *Delay Spread* T_d . Normally, T_d is of the order of microseconds, while it is of the order of microseconds for T_s : $T_d \ll T_c$ and it is called *underspread* channel

- Recall in two-path model, *Coherence Time* T_c is defined as time to travel from Peak to Valley. Similarly, in multi-path model, T_c is defined as the interval over which the channel changes significantly as a function of t
- Coherence Time T_c & Doppler Spread D_s show how quickly channel changes over time, hence
 - Channels are often categorized as fast fading and slow fading
 - In general, if $T_c \gg \frac{1}{B}$, i.e., channel keeps constant over many symbol durations, we have *slow (or time flat) fading*. Otherwise, it is *fast (or time selective) fading*
 - Clearly, fast or slow not only depends on the environment but also on the application
- One also can compare Coherence Time T_c and Delay Spread T_d . Normally, T_d is of the order of microseconds, while it is of the order of microseconds for T_s : $T_d \ll T_c$ and it is called *underspread* channel

Prof. Tho Le-Ngoc (McGill University)

Summary of Types of Wireless Channels and Defining Characteristic

Types of channel	Defining characteristic	
Flat fading	$B \ll B_h$	
Frequency selective fading	$B \gg B_h$	
Fast fading	$T_c \ll \frac{1}{B}$	
Slow fading	$T_c \gg \frac{1}{B}$	
Underspread	$T_d \ll \tilde{T}_c$	

- B: Communication Bandwidth
- *T_d* and *B_h*: *Delay Spread* and *Coherence Bandwidth*
- T_c and D_s: Coherence Time and Doppler Spread

27/30

Lecture I

An Example: Representative Values of The Physical Parameters

Key Channel Parameters	Symbol	Values
Carrier Frequency	f_c	1 Ghz
Communication Bandwidth	В	1 MHz
Distance	d	1 km
Velocity of Mobile	V	60 km/h
Doppler Shift	$D = f_c v/c$	50 Hz
Doppler Spread	D_s	100 Hz
Coherence Time	$T_c = \frac{1}{2D_c}$	5 ms
Delay Spread	T_d	1 μ s
Coherence Bandwidth	$B_h = \frac{1}{2T_d}$	500 kHz

э

(a)

28/30

 Taking into account Gaussian noise, we will study the complex baseband representation of the model

$$y(t) = \sum_{i} a_i(t)x(t - \tau_i(t)) + w(t)$$

- Using sampling theorem, we will consider the discrete-time baseband model
 - Single-tap model, which corresponds to frequency flat fading
 - Multiple-tap model, which corresponds to frequency selective fading, where we must take into account the ISI
- We will end up with statistical channels models, which are very helpful for the system analysis and design

Final Remark: You might want to refer to **Lecture Note A23**, where a detailed explantation for physical parameters is presented using *Multi-path Intensity Profile* and *Time Correlation Function*

 Taking into account Gaussian noise, we will study the complex baseband representation of the model

$$y(t) = \sum_{i} a_i(t)x(t - \tau_i(t)) + w(t)$$

- Using sampling theorem, we will consider the discrete-time baseband model
 - Single-tap model, which corresponds to frequency flat fading
 - Multiple-tap model, which corresponds to frequency selective fading, where we must take into account the ISI
- We will end up with statistical channels models, which are very helpful for the system analysis and design

Final Remark: You might want to refer to **Lecture Note A23**, where a detailed explantation for physical parameters is presented using *Multi-path Intensity Profile* and *Time Correlation Function*

 Taking into account Gaussian noise, we will study the complex baseband representation of the model

$$y(t) = \sum_{i} a_i(t)x(t - \tau_i(t)) + w(t)$$

- Using sampling theorem, we will consider the discrete-time baseband model
 - Single-tap model, which corresponds to frequency flat fading
 - Multiple-tap model, which corresponds to frequency selective fading, where we must take into account the ISI
- We will end up with statistical channels models, which are very helpful for the system analysis and design

<u>Final Remark</u>: You might want to refer to **Lecture Note A23**, where a detailed explantation for physical parameters is presented using *Multi-path Intensity Profile* and *Time Correlation Function*

 Taking into account Gaussian noise, we will study the complex baseband representation of the model

$$y(t) = \sum_{i} a_i(t)x(t - \tau_i(t)) + w(t)$$

- Using sampling theorem, we will consider the discrete-time baseband model
 - Single-tap model, which corresponds to frequency flat fading
 - Multiple-tap model, which corresponds to frequency selective fading, where we must take into account the ISI
- We will end up with statistical channels models, which are very helpful for the system analysis and design

<u>Final Remark</u>: You might want to refer to **Lecture Note A23**, where a detailed explantation for physical parameters is presented using *Multi-path Intensity Profile* and *Time Correlation Function*

Prof. Tho Le-Ngoc (McGill University)

Fading Channels: Modeling

Lecture I 29 / 30

Thank you!

Prof. Tho Le-Ngoc (McGill University)

Fading Channels: Modeling

Lecture I 30 / 30